Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Proteomics of Coregulator Complexes. PLoS Computational Biology. 7, e1002319 (2011)

Summary adapted from Declan (DC):

The authors attempt to devise a few simple statistical metrics using high-throughput experimental data (many experiments involving immuno-precipitation coupled with mass spec) in order to predict protein-protein and domain-domain interactions involved in
transcription-related complexes. Each experiment entails using mass spec in order to identify the “prey” proteins that associate with a given “bait” protein. Broadly, protein-protein interactions between such prey proteins are predicted with statistical metrics that assign a likely interaction between a pair of proteins if that pair consistently co-occurs (in high abundance) across multiple
experiments. An example of one of their well-performing metrics is the Sorenson coefficient, which is the ratio of twice the number of experiments in which both proteins occur to the number of experiments in which either or both of these proteins occur (naively, this can be thought of as the degree of intersection between the experiments in which Protein A occurs and the experiments in which Protein B occurs). Using the top 10% of predicted interactions for each of their 4 statistical metrics, they validate many interactions with data from the literature, and they also perform experimental validation and docking studies in order to validate a tiny number of their
predictions. They supply their resultant networks as web-accessible data files.

Mazloom AR et al.
Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Proteomics of Coregulator Complexes. PLoS Computational Biology. 7, e1002319 (2011) PMID: 22219718
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1002319

Tags:

Leave a Reply